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Abstract
Inelastic x-ray scattering has become a powerful tool in condensed matter
physics in recent years. This is due to the advent of the third-generation
synchrotron radiation sources, which provide an intense and collimated x-ray
beam, and due to improvements in x-ray optics. This article is an introduction
to the basic principles of inelastic x-ray scattering with meV resolution. In
particular the geometric and crystal contributions for monochromator and
analyser crystals are discussed. Also, an estimation of phonon intensities,
obtained with a meV spectrometer, is derived.

1. Introduction

With the advent of third-generation synchrotron radiation sources in the last couple of years,
a new method for inelastic spectroscopy has become a powerful tool in condensed matter
physics: inelastic scattering of hard x-rays with meV resolution. It resembles inelastic neutron
spectroscopy with a triple-axis spectrometer. However, in view of the high energy of the
x-rays, a relatively high energy resolution is required in this case. This leads to an extreme
backscattering geometry at the monochromator and the analyser crystals.

A spectrometer for inelastic scattering of hard x-rays with meV resolution was proposed
first in 1983 by Dorner and Peisl [1]. This instrument is based on two spherically bent
crystals in backscattering geometry serving as monochromator and analyser. The realization
of such a spectrometer that allows one to measure phonons directly with synchrotron radiation
was achieved in 1987 (see Burkel [2] for an overview). The spectrometer was located on a
wiggler beamline of the synchrotron radiation source HASYLAB (Hamburger Synchrotron
Labor) and operated with an energy resolution of about 10 meV at best. At the European
Synchrotron Radiation Facility (ESRF) this kind of spectrometer was further developed on
an undulator beamline by Sette et al reaching an overall energy resolution between 3 meV
and 1.5 meV [3, 4]. Currently, several new inelastic spectrometers are either being built or
planned at the third-generation synchrotron sources ESRF in France, the Advanced Photon
Source (APS) in the USA [5] and the Super Photon ring 8 GeV (SPring-8) in Japan [6], which
will allow energy resolutions between 1 meV and 3 meV and will permit access to this new
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kind of spectroscopy to a larger number of users. A recent review covering the development
and results from inelastic x-ray scattering can be found in Burkel [7].

The purpose of this article is to give an introduction to this technique and to explain the
relevant contributions to the energy resolution. In particular, the backscattering geometry is
discussed in detail. In the last section, the intensity for phonon scattering is estimated with
respect to dependence on the atomic number. This should help new users of this technique to
estimate phonon intensities and the feasibility of an experiment.

2. Scattering cross section

A general inelastic scattering process is sketched in figure 1: an x-ray or neutron beam with a
certain monochromatic energy Ei and wave vector �ki is hitting the sample. Inside the sample
an inelastic process is excited with an energy E = h̄ω (in the following it is just referred to
as ω) and momentum transfer h̄ �Q.

Ei, ki 

Ef, kf 

Q 
θ 

Figure 1. A schematic diagram of an inelastic scattering process.

The scattered beam with energy Ef and wave vector �kf is shifted by this energy ω and is
deflected by the angle θ . From the conservation of energy and momentum it follows that

ω = Ei − Ef (1)

and

�Q = �ki − �kf . (2)

If now the energy shift of the scattered radiation is analysed at a certain scattering angle, one
can measure the energies of excitations related to a certain length scale. The cross section for
non-resonant inelastic x-ray scattering is (see e.g. [8])

d2σ

d� dω
( �Q,ω) = r2

e (�ei · �ef )2Ef
Ei
N

[
f 2(Q)Scoh

ion (
�Q,ω) + zS inc

val (
�Q,ω) + (Z − z)S inc

ion(
�Q,ω)

]

(3)

with re the classical electron radius, N the number of atoms in the beam and �ei , �ef the
polarization vectors of the incoming and scattered radiation. Scoh

ion (
�Q,ω) is the coherent

dynamic structure factor for the ions, which is identical to the coherent dynamic structure factor
that can be observed with inelastic neutron scattering. Within the adiabatic approximation it
is assumed that the electrons move instantaneously with the whole atom, and therefore the
coherent correlation functions observed from the nuclei and from the electron clouds have the
same energy dependence. For the valence electrons, however, the atomic form factor might be
different from the atomic form factor for the free atom, usually found in the standard literature.
Therefore, the form factor is split up into a part for the core electrons, fion(Q), and a part for
the valence electrons fval(Q) [9]:

f (Q) = fion(Q) + fval(Q). (4)
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The part for the valence electrons is related to the valence electron density distribution
between the ions, information that cannot be extracted from inelastic neutron scattering. The
determination of the form factor at lowQ can yield in principle a direct insight into properties
like the electron gas compressibility [10] or the pseudopotential between ions and electrons in
a metal. However, this requires a precise determination of phonon intensities [11].

The other parts of the cross section are incoherent scattering from valence electrons,
zS inc

val (
�Q,ω), with z being the number of valence electrons, and incoherent scattering from core

electrons, (Z−z)S inc
ion(

�Q,ω), withZ being the total number of electrons. These excitations are
typically at much higher energies than the coherent phononic excitations. In a measurement
with meV resolution, the incoherent scattering contributions are less intense and usually
invisible, unless one tunes the energy transfer to several eV. Therefore the relevant part for
measurements with meV resolution is the coherent structure factor Scoh

ion (
�Q,ω).

There are several practical limitations on the determination of Scoh
ion (

�Q,ω) that occur in
neutron scattering that are absent in inelastic x-ray scattering. First, neutrons are classical
particles, with a certain velocity. If the phase velocity of the excitation in the sample is higher
than the flight velocity of the neutrons, these excitations cannot be observed in the scattering
process due to kinematical restrictions. Second, certain isotopes like 3He or hydrogen are
extremely difficult to investigate with neutrons, because of a high absorption or a large
incoherent cross section. And finally, neutron scattering requires large samples because of
the large beam size. The undulator beam of a third-generation synchrotron source can be
focused with almost no losses to a few micrometres in size.

In fact, inelastic x-ray scattering and inelastic neutron scattering can be regarded as
complementary techniques: if an energy resolution of less than 1 meV is required and a
large sample can be prepared, inelastic neutron scattering will be in general favourable. For
small sample volumes and if excitations are at relatively high energies, inelastic x-ray scattering
will be the more suitable technique. The combination of these two techniques bears also the
possibility of looking at the dynamics of specific atoms in, e.g., alloys, since the element-
specific cross sections are entirely different for the two techniques.

3. Basic relations

The required relative energy resolution is about

δE

Ei
≈ 1 meV

20 keV
= 5 × 10−8. (5)

Because the energy transfer ω is small compared to Ei , the magnitude ki of the x-ray wave
vector does not change significantly during the scattering process. According to figure 1, the
magnitude of the momentum transfer in equation (2) can therefore be written as

Q = 2ki sin θ/2 = 2Ei
h̄c

sin θ/2 (6)

Q (Å−1) = 1.013Ei (keV) sin θ/2. (7)

Consequently, the momentum transfer can be adjusted by changing the scattering angle at
the sample, independently of the energy transfer. This is very useful, because the entire
( �Q,ω)-space is accessible with practically the same resolution in momentum and energy. The
momentum resolution can be adjusted with slits defining the divergences of the incoming and
the scattered radiation.

The energy resolution depends on different quantities, in particular on the quality of the
monochromator and analyser crystals (crystal contributions) and on Bragg angle variation
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at these crystals, which leads also to a broadening of the resolution function (geometry
contributions). Accordingly, the resolution function, R(ω), can be written as the convolution
of four distributions:

R(ω) = Rmono
crystal(ω)⊗ Rmono

geom (ω)⊗ Rana
crystal(ω)⊗ Rana

geom(ω). (8)

In the following, the crystal contribution and the geometry contribution will be discussed in
more detail.

3.1. Crystal contribution for a perfect crystal

The crystal contribution is the energy distribution of a parallel, white x-ray beam reflected by
a flat crystal. If the crystal is strained or not perfect, a distribution of lattice spacings will
lead to a distribution of reflected energies. Since the desired energy resolution is in the range
of δE/E ≈ 10−8, the relative lattice spacing variation should be of that order or smaller.
This condition can be met by today’s available float-zone silicon crystals, if the mounting is
achieved free of strain and if any stress from cutting and polishing is removed by subsequent
etching procedures.

But even for a perfect crystal, the reflected energy has a width larger than zero, because the
x-ray beam is reflected only by a more or less thin layer at the surface of the crystal (extinction
length τext). This leads to an uncertainty in the reflected energy or, more precisely, to the energy
distribution, which corresponds to Rmono

crystal(ω) and Rana
crystal(ω) in equation (8). This distribution

can be calculated by the dynamic theory of crystal reflection and is called the Darwin curve.
The exact dynamic theory for perfect crystals can be found in standard textbooks on x-ray

scattering [12]. For the width of the Darwin curve, δE, depending on energy or wavelength
λ, one finds

δEcrystal

E
= δλ

λ
= reλ

2F( �G)
πV sin2 θB

∝ 1

τext
. (9)

One important result is that the energy width of the reflected intensity does not change much
with the Bragg angle θB close to backscattering. This is why the resolution function can be
split up conveniently into geometric and crystal contributions in equation (8). The structure
factorF( �G) is the sum of the coherent scattering in the direction of the reciprocal-lattice vector
�G from all atoms in the unit cell of volume V . It includes the Debye–Waller factor and the
atomic form factor.

Another consequence of equation (9) is that the energy width becomes drastically smaller
at higher energies or smaller wavelength. The smaller δE, the larger the extinction length
τext. In equation (9) the photoelectric absorption, which sets an upper bound to the extinction
length, was neglected. In table 1 these widths as calculated from the full dynamic theory for
silicon are given1. For high-order reflections, the energy resolution becomes better, but also
the reflectivity drops due to a more unfavourable ratio of extinction to absorption length at
higher energies.

Equation (9) is only true as long as the so-called two-beam condition is fulfilled, which
means that there is one incoming beam and one reflected beam. For certain crystal orientations,
however, more than one Bragg reflection might be excited, which is then called a multiple-
beam case. In this situation, the intensity of the desired reflection can be considerably reduced
and also side maxima in the Darwin curve can occur.

A detailed study of this phenomenon was done by Sutter and co-workers [13]. It turns out
that in a silicon crystal practically every reflection close to perfect backscattering geometry

1 Results are calculated for a temperature of 300 K and a thick crystal with the program reflex written by Y Shvydko.
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Table 1. Crystal contributions for different silicon reflections. The reflections are higher orders of
the (1, 1, 1) and the (3, 1, 0) reflections, currently used at the existing spectrometers.

Reflection E (keV) τext (µm) τabs (µm) δEcrystal (meV) Reflectivity (%)

(7, 7, 7) 13.839 40 300 5.13 81
(12, 4, 0) 14.438 30 380 6.21 87

(8, 8, 8) 15.816 50 500 4.42 85
(9, 9, 9) 17.793 100 700 1.99 76

(18, 6, 0) 21.657 200 1220 1.23 78
(11, 11, 11) 21.747 280 1240 0.85 70
(12, 12, 12) 23.724 270 1590 0.79 75
(13, 13, 13) 25.701 600 1990 0.37 61
(24, 8, 0) 28.876 840 2730 0.255 61
(15, 15, 15) 29.655 1400 2930 0.153 46

is a multiple-beam case, typically with twenty or more beams involved. However, for Bragg
angles a few millidegrees away from backscattering, multiple-beam effects can be in principle
avoided by choosing a certain crystal orientation. Another way to get around this problem is
to use crystals other than silicon, which have a non-cubic crystal symmetry. Then, however,
it becomes difficult to obtain crystals of a high enough quality. The best resolution obtained
so far from a non-silicon crystal is 2.5 meV from a sapphire crystal at 21.5 keV in exact
backscattering geometry [14].

In the following we assume that multiple-beam situations can be avoided in one way or
the other and that therefore there is no significant dependence of the crystal contribution on
small variations of the Bragg angle.

3.2. Geometry contribution for a flat crystal

A distribution of reflected wavelengths arises from the fact that the incident angle for a divergent
beam varies over the crystal surface. From a differentiation of the Bragg law one can easily
derive

δEgeom

E
= cotan(θB) δθB = tan(ε) δε ≈ ε δε (10)

with ε = π/2 − θB . Close to backscattering, tan(ε) can be replaced by ε. In contrast
to the crystal contribution, the geometry contribution depends strongly on the Bragg angle.
As a consequence, a geometry close to perfect backscattering geometry is required for a
meV spectrometer at the monochromator and analyser crystals. However, even in perfect
backscattering geometry, the energy width in equation (10) does not go to zero, as can be seen
in figure 2(a), if the angular divergence of the beam δεbeam is finite. On the surface of the crystal,
the Bragg angle is constant on circles (dotted lines in figure 2) around the backscattering point,
where ε = 0. In this case, although the crystal is aligned to perfect backscattering, the average
Bragg angle is about 1

4 δεbeam. The width of the Bragg angle distribution in equation (10) is
about δε = 1

2 δεbeam. Therefore,

δEgeom

E
≈ 1

8 (δεbeam)
2. (11)

In a real experiment this geometry can be achieved at the analyser with a semitransparent
detector with a sufficient time resolution (e.g., as in [14]). However, because of the limited
efficiency of this set-up, a geometry slightly off exact backscattering is preferred for a
spectrometer (see figure 2(b)). For an estimation of the width of the Bragg angle distribution,
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one can approximate δε ≈ δεbeam in the scattering plane of the back-reflection and ε ≈ 〈ε〉,
the Bragg angle in the centre of the beam cone.

δεbeam 

δε 
δε 

〈ε〉 
〈ε〉 

(a) (b) 

Figure 2. Distribution of scattering angles in perfect backscattering geometry (a) and close to
perfect backscattering (b). The rectangle is an area on the crystal that is illuminated by the beam.
The black point is the backscattering point. The Bragg angle is constant on the dotted lines.

For a detailed calculation of the shape of the resolution function, one has to integrate over
the distribution of Bragg angles on the illuminated two-dimensional crystal surface [15].

3.3. Geometry contribution for a curved crystal

In inelastic x-ray scattering, crystals are spherically bent for two reasons: first, to focus the
intensity that is collected in a larger solid angle to a small detector and, second, to maintain
the same or similar Bragg angle all over the crystal. The focusing behaviour is the same as for
a mirror with optical light and can be described by the lens equation

1

L
+

1

l
= 2

R
(12)

where R is the bending radius of the mirror, L is the distance from source to mirror and l is
the distance from mirror to focus. In the case of perfect backscattering, the source and image
are both in the centre of the sphere and the Bragg angle is constant all over the crystal; that is,
ε = 0.

For L 
= l and for a tangential distance d � R between the sample and the detector, the
Bragg angle at a small distance s from the backscattering point is (see figure 3)

2ε = s − d/2

l
− s + d/2

L
. (13)

To calculate the Bragg angle distribution, one has again to consider the two-dimensional
crystal surface. Here, we estimate this contribution for a situation close to backscattering by
differentiating equation (13):

2 δε = δs

(
1

l
− 1

L

)
. (14)

The distance δs ≡ D can be understood as the slit opening in front of the crystal. The ratio
L/l is also called the demagnification ratio. Equation (14) can therefore be rewritten as

δεdemag = D

2L

(
L

l
− 1

)
. (15)
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d
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L
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source 

focus

2ε 
spherical  
  crystal 

Figure 3. The geometry contribution for a curved crystal. One particular beam is shown, which is
reflected from the source to the focus.

The part of the energy resolution function arising from equation (15) is called the demag-
nification contribution. By choosing the demagnification ratio close to one, it is possible to
reduce the geometrical contribution to a fraction of an meV, even over a large solid angle. At the
same time the radiation is focused to a small area, which makes it convenient to collect it with
a solid-state detector. With a small detector or a slit in front of the detector, a bad focusing
part of the analyser will not hit the detector and degrade the energy resolution. Therefore,
focusing errors of the analyser will only affect the efficiency of the analyser but not the energy
resolution.

4. The monochromator

An undulator beam of a synchrotron source has typically a vertical divergence of about 20µrad
or less. According to equation (10) one can achieve a geometrical contribution from a flat crystal
of δE/E � 5 × 10−8 with εmono � 2.5 mrad. The use of just one crystal in backscattering
geometry is the conceptually easiest design for a monochromator and has the advantage of a
high efficiency [16]. This has two consequences. First, the monochromator has to be far away
from the sample to have a sufficient beam separation at the sample position. A separation of
10 cm requires in our example a distance of about 20 metres. Additional optical elements like
mirrors or other crystals can be brought into the beam path to increase this offset.

The second consequence is that a tuning of the energy cannot be done by a variation of the
Bragg angle. Changing the Bragg angle to larger ε would increase the geometry contribution
and a change to smaller ε is not possible because of the space limitations.

Therefore, it is more convenient to tune the energy by changing the lattice constant of the
crystal. From the definition of the thermal expansion and from Bragg’s law it follows that

ω

Ei
= α (T (16)

where α is the thermal expansion coefficient (2.56×10−6 for silicon at room temperature [17]).
A temperature difference of (T = 1 K between monochromator and analyser leads to an
energy shift of 51 meV for silicon at 20 keV. An energy scan can be done conveniently by
scanning the temperature over a few K.

Another way to build a tunable monochromator is to reduce the divergence of the undulator
beam by using asymmetrically cut crystals. If the divergence is reduced to under 1 µrad, the
Bragg angle can be as large as 50 mrad before the geometry contribution becomes dominant.
This relaxes the backscattering geometry with the result that even a backscattering channel-cut
crystal can be used. Energy tuning can be achieved by rotating the channel cut on aµrad scale,
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without noticeable beam motion. However, because of equation (16), the monochromator and
the analyser have to be kept in a stable temperature environment.

This idea was realized by Toellner [18] and allows a tunability range up to ±100 eV at
an energy resolution of 1.4 meV. Because the beam leaves the monochromator in a forward
direction, it is also called an in-line monochromator. In contrast to the case for a single-crystal
backscattering monochromator, it is relatively easy to integrate it into a standard beamline
design (see also figure 4).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        in-line�
monochromator�

analyser�

detector�

sample�

backscattering�
monochromator�

analyser�

detector�

sample�

(a) 

(b) 

Figure 4. The design of a meV spectrometer with a backscattering monochromator (a) and with
an in-line monochromator (b).

5. The analyser

At the analyser, the divergence of the beam coming from the sample is larger than in the case
of the monochromator. Typically one tries to collect the radiation in a range of 1◦ × 1◦. As
described above, this can be done by spherically bent crystals in backscattering geometry.
However, to avoid bending stress, the analyser has to be cross grooved at the reflecting surface.
Therefore the analyser consists of many small flat crystals that are glued to a sphere (see
e.g. [4]). Two geometry contributions have to be considered: the demagnification contribution
and the flat-crystal contribution for an individual crystal pixel. In the following we derive all
the settings for the analyser depending on the energy resolution and the available pixel size at
the analyser. The beam divergence at a pixel with size p in a distance L from a point source is

δεpixel = p

L
. (17)

In an experiment it is often crucial to have some amount of space around the sample to
accommodate certain sample environments like a furnace or a cryostat. On the other hand, the
x-ray detector has to be close to the sample to keep the demagnification contribution small.
If the demagnification contribution (15) is chosen to be of the same order or smaller than the
pixel size contribution (17),

D

2L

(
L

l
− 1

)
� p

L
. (18)
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With (L = L− l it follows that

(L � p
2l

D
≈ 115p (19)

if the opening angle of the analyser is arctan(D/l) ≈ 1◦. If the pixel contribution and the
demagnification contribution are equal, the width of the convoluted Bragg angle distributions
can be approximated with

δεana = ((δεpixel)
2 + (δεdemag)

2)1/2 =
√

2εpixel =
√

2
p

L
. (20)

A lower limit for the Bragg angle εana comes from the requirement that the source and the
image have to be separated at the location of the detector. Since the image is at least twice the
pixel size, it follows that

εana >
p

L
. (21)

With a semiconductor detector optimized to this extreme backscattering geometry, it is possible
to get close to this value:

εana ≈ 3p

2L
. (22)

Inserting equations (20) and (22) into equation (10) and solving for L yields

L = p

(
3E√

2δEana
geom

)1/2

. (23)

All dimensions for the analyser settings are defined by equations (22), (23) and (19) and scale
with the dimension of the pixel size. The pixel size that can be achieved with high-speed
diamond saws is limited by the minimum size of a blade that can cut a couple of mm deep into
silicon. Currently, with a width of the cut after etching of 0.1 mm to 0.2 mm, a minimum pixel
size of about 1 mm seems acceptable, with 20%–40% of the area being lost. Reducing the
pixel size in order to shorten the analyser arm would not only affect the analyser efficiency, but
according to equation (19) it would also reduce the available space at the sample. Examples
of analyser settings for different energy resolutions are discussed in the next section.

6. Design of a meV spectrometer

Putting together the information from the previous section, it is straightforward to understand
the basic design parameters of a specific spectrometer. The quantity to start with is the desired
energy resolution of the whole spectrometer. Since there are crystal contributions and geometry
contributions for both monochromator and analyser, it is a good match if all contributions in
equation (8) are of the same width. That means that each individual contribution has to be
about half of the desired overall energy resolution. The crystal contribution defines the silicon
reflection and the energy of the x-rays that can be used. The setting of the monochromator and
of the analyser can be calculated such that this crystal contribution is matched. An overview
of settings for different energy resolutions is given in table 2. Notice that these parameters are
calculated from the previous approximations. In a real spectrometer, the values for the overall
energy resolution are usually about 10%–20% smaller. The reason is the neglect of the shape
of the individual parts of the resolution function in the calculation.

An energy resolution of 10 meV can be achieved with an analyser arm of 2 to 3 m, which can
conveniently be operated in the vertical scattering geometry. For a better resolution, a longer
analyser set-up is required, which is easier to achieve in the horizontal scattering geometry.
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Table 2. Settings for the analyser for different energy resolutions. The total energy resolution is
here twice the value of the geometrical contribution of the analyser.

δEtotal (meV) δEgeom (meV) Reflection E (keV) θBragg (deg) L (m)

12.42 6.21 (12, 4, 0) 14.438 89.95 2.22
10.26 5.13 (7, 7, 7) 13.839 89.96 2.39

8.84 4.42 (8, 8, 8) 15.816 89.97 2.76
3.98 1.99 (9, 9, 9) 17.793 89.976 4.35
2.46 1.23 (18, 6, 0) 21.657 89.983 6.11
1.70 0.85 (11, 11, 11) 21.747 89.986 7.36
1.58 0.79 (12, 12, 12) 23.724 89.989 7.98
0.74 0.37 (13, 13, 13) 25.701 89.991 12.1
0.51 0.255 (24, 8, 0) 28.876 89.993 15.5
0.30 0.153 (15, 15, 15) 29.655 89.995 20.2

The drawback of the horizontal scattering geometry is that, for higher scattering angles, the
intensity is decreasing, due to the horizontal polarization of the synchrotron radiation and the
polarization-dependent term in equation (3).

For very good energy resolutions of less than 1 meV, the length of the analyser arm exceeds
10 metres, so it becomes difficult to build and to integrate in a beamline design. Also, the
Bragg angles become very close to backscattering, which will lead to more problems with the
multiple-beam excitations. However, the most important limitation that currently restricts the
energy resolution to above 1 meV is the available flux at a third-generation synchrotron source.
A possibility to improve the flux situation is the installation of multiple analysers, which was
first done at the spectrometers at the ESRF. This requires even more instrumentation effort
on the analyser side, but multiplies the amount of data that can be taken per time unit. An
estimation of the flux will be given in the next section.

In figure 4(a) the design is sketched for an instrument with a backscattering mono-
chromator, which is used at two instruments at the ESRF (ID16 and ID28) and planned for
a spectrometer at SPring-8 (BL35XU). Figure 4(b) shows the set-up with an in-line mono-
chromator, currently used at the APS spectrometer (SRI-3ID-C).

7. Phonon intensities

The intensity from phonon scattering can be estimated for small values of Q. We start from
equation (3) and omit the terms for electronic scattering. Also, we can assume thatEf /Ei ≈ 1
and for small scattering angles �ei ‖ �ef , thus

d2σ

d� dω
( �Q,ω) = r2

e Nf (Q)
2Scoh

ion (
�Q,ω). (24)

For S( �Q,ω) we apply the one-phonon cross section for a crystal with one atom per unit
cell [19]:

S( �Q,ω) = e−2W( �Q) h̄

2Mω0
| �Q · �e �Q|2 [(n + 1)δ(ω − ω0) + nδ(ω + ω0)] (25)

where ω0 is the phonon frequency. At small Q the Debye–Waller factor e−2W( �Q) becomes
one and the eigenvector �e �Q for the longitudinal acoustic phonons becomes parallel to �Q. The
occupation number n of an acoustic phonon can be approximated for small Q and ω0 by

n = 1

e(h̄ω0/[kBT ]) − 1
≈ kBT

h̄ω0
� 1. (26)
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Therefore the magnitudes of the phonon creation and annihilation parts become equal:

S(Q → 0, ω) = Q2kBT

2Mω2
0

[δ(ω − ω0) + δ(ω + ω0)] . (27)

Integration over ω yields

S(Q → 0) = Q2kBT

Mω2
0

. (28)

For acoustic phonons, the frequency ω0 is proportional to the sound velocity v in the sample:

ω0 = vQ (29)

and (28) becomes

S(Q → 0) = kBT

Mv2
. (30)

A similar relation can also be derived for liquids and is known as the compressibility limit of
S(Q → 0) (see e.g. [20]). Inserting relation (30) into (24) and integrating (24) over ω yields

dσ

d�
(Q → 0) = r2

e NZ
2 kBT

Mv2
(31)

with f (Q → 0) = Z. Now, we consider an experiment in transmission geometry with a
sample thickness l = labs, the photoelectric absorption length in the sample for the particular
energy. At this thickness, the transmitted beam is attenuated to 1/e and a maximum count rate
from the sample can be expected. The number of atoms in the sample is N = Aρlabs, with A
being the geometrical cross section of the sample in beam direction and ρ the number density;

dσ

d�
(Q → 0) = r2

e

1

e
labsAρZ

2 kBT

Mv2
. (32)

With the definition
dσ

d�
(Q) = I

I0

A

�
(33)

of the scattering cross section, one obtains

I

I0
= r2

e �
1

e
labsρZ

2 kBT

Mv2
. (34)

I denotes the scattered intensity in the solid angle�, and I0 is the incident intensity hitting the
sample. In order to compare the scattered intensities for different incident energies, the solid
angle � is now chosen in such a way that the momentum resolution remains constant. For
small angles θ the sine function in equation (6) can be approximated to be linear. Therefore,

� = (δθ)2 ≈
(
δQ

ki

)2

=
(
h̄c δQ

Ei

)2

. (35)

The integrated intensity discussed above includes the Stokes and the anti-Stokes line of an
acoustic phonon. Since we are interested in the intensity of just one phonon, we take half of
the value in equation (34) and combine it with equation (35):

I

I0
= r2

e h̄
2c2(δQ)2

2eE2
i

Z2ρlabs
kBT

Mv2
. (36)

Now we can estimate the scattered intensity from equation (36) for different chemical elements.
In figure 5 this is done for two different x-ray energies at 21.657 keV and at 14.438 keV for a
momentum resolution of δQ = 1 nm−1. The scattered intensities are in the region of 10−8 of
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Figure 5. Expected phonon intensities for different elements in forward scattering, normalized to
the flux on the sample and 1 nm−2 momentum resolution .

the incoming intensity but can vary by about a factor of ten around that value, depending on
the location of the absorption edges and the sound velocity of a particular chemical element.

From a state-of-the-art synchrotron source, the theoretical available flux is of the order of
1010 s−1 meV−1. Taking into account losses in the monochromatization and at the analyser
and losses due to a non-ideal sample geometry, the typical count rates in an inelastic scattering
experiment are often of the order of 1 count s−1 or below. A lower limit for the count rate is
given by the electronic noise level of the x-ray detector, which is about 5 × 10−3 counts s−1.

One has to keep in mind that these numbers are calculated for phonons at small momentum
transfers. In single crystals, phonons can be measured also in higher Brillouin zones, which
can yield considerably higher count rates, because of the Q2-dependence in the phonon cross
section in equation (25). In liquids and amorphous materials, however, phonons can be
observed usually only at low Q; therefore most of these experiments are flux limited. One
further complication in disordered materials is that the tail of a fairly strong elastic line is
superimposed on the phonon intensity.

8. Conclusions

The strength of inelastic x-ray scattering lies in its utility in investigating small samples and
liquid or amorphous samples in the low-Q region. To obtain energy resolutions in the range
of 1 meV to 3 meV, large instruments with optimized crystal optics are required. Most exp-
eriments today with inelastic x-ray scattering are flux limited. This requires careful planning
of the experiment and counting times similar to those in neutron spectroscopy. Also it requires
the strongest available sources for hard x-rays, currently the ESRF, the APS or SPring-8.
Therefore, the amount of available time for experiments is restricted, but with the installation
of new instruments in the future this technique will become more accessible to users.
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